Stem Cell Microvesicles Transfer Cystinosin to Human Cystinotic Cells and Reduce Cystine Accumulation In Vitro
نویسندگان
چکیده
Cystinosis is a rare disease caused by homozygous mutations of the CTNS gene, encoding a cystine efflux channel in the lysosomal membrane. In Ctns knockout mice, the pathologic intralysosomal accumulation of cystine that drives progressive organ damage can be reversed by infusion of wildtype bone marrow-derived stem cells, but the mechanism involved is unclear since the exogeneous stem cells are rarely integrated into renal tubules. Here we show that human mesenchymal stem cells, from amniotic fluid or bone marrow, reduce pathologic cystine accumulation in co-cultured CTNS mutant fibroblasts or proximal tubular cells from cystinosis patients. This paracrine effect is associated with release into the culture medium of stem cell microvesicles (100-400 nm diameter) containing wildtype cystinosin protein and CTNS mRNA. Isolated stem cell microvesicles reduce target cell cystine accumulation in a dose-dependent, Annexin V-sensitive manner. Microvesicles from stem cells expressing CTNS(Red) transfer tagged CTNS protein to the lysosome/endosome compartment of cystinotic fibroblasts. Our observations suggest that exogenous stem cells may reprogram the biology of mutant tissues by direct microvesicle transfer of membrane-associated wildtype molecules.
منابع مشابه
Altered status of glutathione and its metabolites in cystinotic cells.
BACKGROUND Cystinosis is an autosomal recessive disorder, caused by mutations of the lysosomal cystine carrier cystinosin, encoded by the CTNS gene (17p13). The concomitant intralysosomal cystine accumulation leads to multi-organ damage, with kidneys being the first affected. Altered mitochondrial oxidative phosphorylation has been demonstrated in animal proximal tubules loaded with cystine dim...
متن کاملCystinosis (ctns) zebrafish mutant shows pronephric glomerular and tubular dysfunction
The human ubiquitous protein cystinosin is responsible for transporting the disulphide amino acid cystine from the lysosomal compartment into the cytosol. In humans, Pathogenic mutations of CTNS lead to defective cystinosin function, intralysosomal cystine accumulation and the development of cystinosis. Kidneys are initially affected with generalized proximal tubular dysfunction (renal Fanconi ...
متن کاملHematopoietic Stem Cells Transplantation Can Normalize Thyroid Function in a Cystinosis Mouse Model.
Hypothyroidism is the most frequent and earliest endocrine complication in cystinosis, a multisystemic lysosomal storage disease caused by defective transmembrane cystine transporter, cystinosin (CTNS gene). We recently demonstrated in Ctns(-/-) mice that altered thyroglobulin biosynthesis associated with endoplasmic reticulum stress, combined with defective lysosomal processing, caused hypothy...
متن کاملHematopoietic stem cell gene therapy for the multisystemic lysosomal storage disorder cystinosis.
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders (LSDs). The defective gene is CTNS encoding the lysosomal cystine transporter, cystinosin. Cystine accumulates in all tissues and leads to organ damage including end-stage renal disease. Using the Ctns(-/-) murine model for cystinosis, we tested the use of hematopoietic stem and prog...
متن کاملDescription of a selection method highly cytotoxic for cystinotic fibroblasts but not normal human fibroblasts.
Nephropathic cystinosis is an inherited disorder characterized by a high intralysosomal accumulation of cystine due to a defect in lysosomal cystine transport. Cystine can be specifically loaded into the lysosomal compartment of intact cells by incubating cells with cystine dimethyl ester (CDME). We have applied this methyl ester loading technique to develop a selection method that is highly cy...
متن کامل